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Figure 3. Absorption spectra of 1.2-pM and 30.0-MM solutions of the zinc 
metalloporphyrins in CH2CI2 with the baseline offset from zero for clarity. 
Uncorrected emission spectra of equally absorbant solutions at 420 nm 
were excited at this wavelength. Homogeneity was verified by excita­
tion-emission spectral analysis. 

ticipate that the method will be general and that the correlation 
of structures with properties will significantly aid the inter­
pretation of in vivo and in vitro porphyrin systems such as the 
photosynthetic chlorophyll dimers. The effects of systematic 
changes in ring separation, orientation, donor-acceptor sub-
stituents, metal and mixed-metal chelates, and intercalates can 
now be examined. 
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Detection and Characterization of the 
Long-Postulated Fe-OO-Fe Intermediate in the 
Autoxidation of Ferrous Porphyrins 

Sir: 

Dioxygen bridged diiron complexes have been frequently 
proposed as important, although unstable, intermediates in the 
autoxidation of ferrous complexes.U3 Such bridged species 
have also been proposed to represent the oxygenated state of 
the respiratory pigment, hemerythryn.4 In the development 
of strategies for the synthesis of low molecular weight models 
of myoglobins and hemoglobins, steric protection of the iron 
site has been deemed useful to prevent autoxidation via an 
Fe-OO-Fe intermediate.5-8 Nevertheless, and in contrast to 
the situation with other metals, notably cobalt,9,10 no Fe-
00-Fe complex has been unambiguously identified and none 
of its structural and electronic properties or chemical reactivity 
characterized. Only a few reports of O2 uptake with a Fe:02 
ratio of 2:1 have appeared which are suggestive of a Fe-OO-Fe 
species.11,12 The proposed form for this bridged species has 
been variously described as Fe"-02-Fe" (dioxygen bridge2,1') 
or Fe11^OO-Fe"1 (peroxo bridge2), while others have antic­
ipated rapid cleavage to two Fe-O monomers.5 We report here 
on the 1H NMR characterization of such a Fe-OO-Fe com­
plex and show that the linkage involves the peroxo bridge. 

As an initial step in elucidating the general mechanism of 
oxidation of ferrous porphyrins, we have investigated the 
reaction between unligated mero-tetra-(w-tolylporphyrin)-
iron(II), designated PFe, and molecular oxygen in dry tolu­
ene-^. The final product is the expected ^-oxo dimer, 
PFeOFeP, and the proposed steps thought to account for the 
net reaction can be written 
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Figure 1. Proton trace of sample containing PFe (A), whose peaks are labeled ai, PFe-OO-FeP (C), with peaks designated q, and PFe-O-FeP (E) with 
peaks marked e;, in toluene-rfs at -50 °C. The subscript to the labels, o, m, and p, refer to ortho H, meta H, and para H, $ to the unresolved composite 
of ortho, meta, and para H, CH3 to /W-CH3, and H to the pyrrole H; S = solvent peaks and X = impurities. 
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The highly characteristic 1H NMR shifts13 of iron porphyrins 
in various oxidation and spin states suggested to us the possi­
bility of identifying and characterizing some of these proposed 
intermediates. 

A 5 mM solution of PFe in degassed, dry toluene-^s at —50 
0C yields the previously assigned14 proton trace whose peaks 
are labeled a in Figure 1. Introduction of some dry O2 results 
in the appearance of a new set of peaks labeled c, which are 
assigned to the dimer C. Apparently B rapidly reacts with A 
to yield C. The pyrrole-H assignment for C is verified by 
spectra of an FeP bearing perdeuterated phenyl groups.14 

Raising the temperature to —30 0C for a few minutes and 
again cooling to —50 0C indicates that some C has been con­
verted to E (peaks labeled e in Figure 1), which is readily 
identified as the previously characterized oxo dimer.15 Solu­
tions containing only C can be prepared. These solutions are 
stable indefinitely at -80 0C (>2 weeks) and for~l h at -30 
0C. Repeated freeze-pump-thaw cycles at —80 0C indicate 
that the step A —• C is irreversible.16 

Species A, C, and E are also readily distinguished by their 
electronic spectra. The most characteristic differences occur 
in the 480-650-nm region. In toluene solution at —80 0C 
prominent absorption maxima for these species are as follows: 
A, 536 nm (« 3 X 104); C, 630 (5 X 103), 540 (2 X 104), 480 
(2 X 104); E, 606 (1 X 104), 565 (2 X 104). 

When a solution containing both A and C is purged of any 
dissolved oxygen and warmed anaerobically to —30 0C, con­
version of a unit of C -» E is accompanied by simultaneous 

conversion of two units of A -»• E, as detected by the integra­
tion of the A and C pyrrole-H peaks before warming and the 
A, C, and E pyrrole-H peaks after warming to -30 0C.17 Thus 
C must possess at least one O2 per two Fe in the complex, which 
is consistent with the Fe-OO-Fe structure. A dimeric structure 
is independently indicated by noting that, when O2 is added 
to a -80 0C toluene-^s solution containing both PFe and P'Fe 
(P' = octaethylporphyrin14), two pyrrole-H C peaks are ob­
served, one for PFe-OO-FeP and one for PFe-OO-FeP'. 

Additional proof for the dimeric nature of C and a charac­
terization of its electronic structure result from solution sus­
ceptibility measurements and the temperature dependence of 
the pyrrole-H contact shift. At ~ - 5 0 0C, the magnetic mo­
ments for A, C, and E were found to be 4.5, 2.6, and 1.5 n&, 
respectively; /x for both A and E correspond closely to published 
values.14'15,18'19 While \i for A remains constant, that at C 
decreases to 2.2 ^B at —83 0C. Hence, C, as previously shown 
for E,14 is antiferromagnetic, and a peroxo formalism, i.e., 
Fe11^OO-Fe111 is strongly indicated. A frozen toluene glass 
of C at 77 K failed to yield an ESR spectrum. The larger 
magnetic moment of C relative to E, when interpreted by a 
coupling between two high spin ferric ions,20 indicates an an­
tiferromagnetic coupling 2 J <~265 K, which is ~30% smaller 
than that for PFe-O-FeP.19 

The weaker coupling of the ferric ion in C compared to E 
is also supported by the pyrrole-H contact shifts. The decrease 
in shift at lower temperature reflects the antiferromagnetism,14 

and the percent decrease in the shift can be taken as a measure 
of the strength of the coupling. Figure 2 shows that the percent 
decrease in pyrrole-H contact shift for PFe-OO-FeP is smaller 
than that for PFe-O-FeP. The weaker coupling in the former 
species can be attributed to its longer bridge. 

Current and future work is directed at detecting B and D 
in solution, as well as determining the effect of a nitrogeneous 
axial base on the stability and electronic structure of the var­
ious intermediates. The role of the axial base21 may control the 
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Figure 2. Graph of pyrrole-H isotropic shift vs. temperature for PFe-
0-FeP, • ; PFe-OO-FeP, O; and PFe-OO-FeP', A. The decrease in 
isotropic shift on lowering the temperature 273 to 200 K is 14% for PFe-
0-FeP and only 9% for PFe-OO-FeP. 

stability of a dioxygen vs. a peroxo bridge and thereby deter­
mine whether the step A -*• C is reversible. 
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15N Nuclear Magnetic Resonance 
as a Probe of Residual Structure in the 
Backbone of Unfolded Hemoglobin 

Sir: 

An important aspect of dynamic studies of protein folding 
is the determination of the degree of order that exists in un­
folded polypeptides.1-3 Optical rotation, UV absorption, vis­
cosity, enzyme activity, NMR, and Raman spectroscopic 
measurements4*8 on unfolded proteins have provided infor­
mation on the existence of highly ordered residual structures 
that contain stable side-chain-side-chain interactions. How­
ever, simpler residual structures consisting of residues whose 
available conformations have been restricted by short range 
interactions with neighboring residues have proved to be more 
difficult to detect.9 NMR is a tool remarkably well suited for 
assaying the degree of time averaged randomness of each 
residue in the backbone of unfolded proteins since 'H, 13C, and 
15N chemical shifts of peptide nuclei are sensitive to confor­
mation and solvation effects.10 Unfortunately, the 1H, 13C, and 
15N NMR spectra protein backbones display notoriously little 
resolution. We here report that exchange of labile N-H hy­
drogens for deuterium is a convenient method for considerably 
improving resolution in the 15N NMR spectra of protein amide 
groups. Using this procedure, we have been able to observe a 
number of glycyl 15N resonances, spread over 20 ppm, in the 
15N NMR spectrum of [GIy-15N] hemoglobin in D2O. Upon 
acid and alkaline denaturation of hemoglobin and globin, not 
all resonances shift to the random coil position, which provides 
evidence that in denaturated globins there are glycyl residues, 
whose conformations have not been completely randomized. 

A Me2SO-treated Friend virus induced murine leukemic 
cell culture grown in medium containing [15N]glycine (95% 
15N) was used to prepare hemoglobin, Hb-[GIy-15N], whose 
glycyl residues and heme groups were labeled to 50% with 
15N.1' The Friend luekemic cell hemoglobin mixture studied1' 
consists of hemoglobins composed of DBA/2 mouse amaJ°r 

globin chains, containing 11 glycyl residues at A2, A13, A16, 
AB1, B3, B6, D7, E7, E6, E20, and EF7,0™i°r globin chains 
with 14 glycyl residues at AlO, A16, B4, B6, B7, CD5, D7, E8, 
E18, EF7, G9, G17, GH2, and H14, and /3minor globin chains, 
which lack the A16 glycyl residue.12 This heterogeneous group 
of labeled glycyl resides consists of residues with a variety of 
4>-\p values and hydrogen-bonding modes and reside in the 
middle and terminal regions of regular and irregular helices, 
in interhelical bends, as well as at the at\0\ contact. 

The proton-coupled 9.12-MHz 15N NMR spectrum of 
carbomonoxy [15N-GIy]hemoglobin (CO-Hb-[GIy-15N]) 
displays a set of three broad, poorly resolved resonances cen­
tered at 80.9 ppm when measured at a concentration of 3.7 mM 
in aqueous 0.05 M, pH 7.5 phosphate buffer, which were 
similar to those reported previously.1' Proton broad-band noise 
decoupling produces a 15N spectrum of lower intensity (NOE 
~ 0.25) consisting of a major resonance at 80.9 and a minor 
resonance at 88.2 ppm. An improvement in resolution could 
be obtained by dilution to 0.8 mM, which allowed the 80.9-ppm 
resonance to be observed as doublet with ' /NH = 95.2 ppm in 
the proton-coupled 15N spectrum. 

Exchange of the hemoglobin amide protons with deuterium 
at 10 0C over the course of several days had a pronounced ef­
fect on the proton coupled 15N NMR spectrum (Figure la) 
OfCO-Hb-[GIy-15N] (0.8 mM in D2O phosphate buffer, pD 
7.5,0.05 M). The spectrum displays no less than seven clearly 
resolved, narrow, and reproducible resonances spanning a 
chemical shift range of 20 ppm. This spectrum demonstrates 
the marked improvement in the resolution of' 5TV spectra of 
proteins which can be obtained simply by exchanging the labile 
amide hydrogen with deuterium. 
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